GSG 勁力半供

Gunter Semiconductor GmbH

TDA1574
 EDITION 09／00

Car and Home Receiver Integrated FM tuner

For inquiry please contact ：
China
Tel：0086－755－3200442
Fax：0086－755－3355520
Hong Kong
e－mail
Tel ：00852－26190748
Fax：00852－24948080
sales＠gsg－asia．com

Integrated FM Tuner for Radio Receivers

Short Description

The integrated circuit contains all the function units needed for a VHF tuner with the exception of the RF pre stage. It is mainly applied in the RF section of car radios and home receivers.

Package

- DIP 18

Pin Configuration

mixer input 1
2 mixer input 2
3 wideband information input ground
5 reference voltage
6 oscillator output
7 oscillator input 1
8 oscillator input 2
9 buffered oscillator output

IF output
standby switch
narrow band information input
IF input 1
IF input 2
supply voltage
mixer output 1
mixer output 2
AGC-output

Functional Description

The TDA1574 is an integrated monolithic FM tuner for use in the RF / IF part of car radios and home receivers. It contains all function units for a complete VHF tuner with exception of a RF stage.

The following sections are integrated:

- mixer
- oscillator inclusive buffer stages and a measuring output
- linear IF amplifier
- standby switch
- reference voltage source
- control voltage generation

The RF input signal reaches a symmetrically built up mixer, its input stages in common base enable very well large - signal characteristics. With exception of the RF input signal the mixer receives via buffer stages an ultra pure oscillator signal with sufficient amplitude, generated by the oscillator itself. Moreover, the oscillator signal is available at pin 9 via buffer stages for instance in order to drive frequency - synthesizers. The IF signal, supplied from the mixer, can be amplified by a linear IF preamplifier which is proofed against overdriving in order to balance signal attenuation by selection means. Wideband or narrow band or also combined gain control of the pre stage can be selected by means of an internal generated control voltage.
Further on the TDA1574 contains an electronic standby switch. The oscillator can be blocked by this switch and the gain of the RF pre stage can be reduced, so that the IC is ready at once after activating of the FM operation, without thermal transients.
An integrated voltage supply delivers a temperature independent voltage of about 4.15 V to provide the oscillator and to generate an internal comparison voltage. This voltage is available at pin 5.

Absolute Maximum Ratings

		\min	\max	unit
Supply voltage	V_{CC}	0.3	18	V
Mixer output DC voltage	V_{16-4} $\mathrm{~V}_{17-4}$		35 35	V V
Narrow band information input voltage	V_{12-4}	0.3	7	V
Reference voltage	V_{5-4}	0.3	7	V
Standby switch input voltage	V_{11-4}	0.3	23	V
Total power dissipation	$\mathrm{P}_{\mathrm{tot}}$		800	mW
Ambient operating temperature	T_{a}	-40	85	${ }^{\circ} \mathrm{C}$
Storage temperature	T_{s}	-55	150	${ }^{\circ} \mathrm{C}$
Thermal resistance	R_{th}		80	$\mathrm{~K} / \mathrm{W}$

note: All pins are short-circuit protected to ground

Recommended Operational Conditions

		\min	\max	unit
Supply voltage	V_{9}	7.0	16	V
Ambient operating temperature	T_{a}	-40	85	${ }^{\circ} \mathrm{C}$

Characteristics

$\mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless specified otherwise
valid for a test circuit according to the shown first figure.

		\min	typ	\max	unit

Power supply

Supply voltage	V_{CC}	7.0	8.5	16.0	V
Supply current (except mixer)	I_{CC}	16.0	24.4	30.0	mA
Reference voltage	V_{5-4}	3.9	4.1	4.4	V

Mixer

Current consumption	$\mathrm{I}_{16}+\mathrm{I}_{17}$	3.5	3.9	4.5	mA
DC input voltage	$\mathrm{V}_{1,2,4}$	4.0		35.0	V
DC output voltage	$\mathrm{V}_{16,17-4}$	4.0		35.0	V
Noise figure	NF		10		dB
Noise figure including input network	NF		12		dB
3rd order intercept point	$\mathrm{EMF}_{11 \mathrm{P} 3}$		117		$\mathrm{~dB} \mu \mathrm{~V}$
Conversion power gain	G_{cp}	10	14		dB
Input resistance	R_{1-4}		22		Ω
Input capacitance	C_{1-4}		14		pF
Output resistance	R_{17-4}		1.9		$\mathrm{k} \Omega$
Output capacitance	C_{17-4}		5.7		pF
Oscilat					

Oscillator

DC input voltage	$\mathrm{V}_{7,8-4}$		1.3		V
DC output voltage	V_{6-4}		2.0		V
Residual FM	$\Delta \mathrm{f}$		2.2		Hz

Oscillator output buffer (measuring output)

DC output voltage	V_{9-4}		6.0		V
Oscillator output voltage					
$R_{\mathrm{L}}=$ infinite, $\mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$	$\mathrm{V}_{9-4(\mathrm{~ms})}$	30	110		mV
$\mathrm{R}_{\mathrm{L}}=75 \Omega$	$\mathrm{~V}_{9-4(\mathrm{rms})}$	30	62		mV

		min	typ	max	unit
Output resistance	R_{9-15}		950		Ω
Linear IF amplifier					
DC input voltage	V_{13-4}		1.2		V
DC output voltage	V_{10-4}		4.5		V
Input impedance	$\begin{aligned} & \mathrm{R}_{14-13} \\ & \mathrm{C}_{14-13} \end{aligned}$	240	$\begin{array}{r} 300 \\ 13 \end{array}$	360	$\begin{gathered} \Omega \\ \mathrm{pF} \end{gathered}$
Output impedance	$\begin{aligned} & \mathrm{R}_{10-4} \\ & \mathrm{C}_{10-4} \end{aligned}$	240	$\begin{array}{r} 300 \\ 3 \end{array}$	360	$\begin{gathered} \Omega \\ \mathrm{pF} \end{gathered}$
Voltage gain $\mathrm{f}=10.7 \mathrm{MHz}$	G_{V}	28	30.6		dB
1 dB compression point $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=7.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{10-4(\mathrm{~ms})}$ $V_{10-4(\mathrm{~ms})}$		$\begin{aligned} & 750 \\ & 550 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Signal to noise ratio	S/N		6.6		dB
Keyed AGC					
Output voltage range	V_{18-4}	0.5		$\mathrm{V}_{\mathrm{CC}}-0.3$	V
AGC output current $\begin{aligned} & I_{3}=0 \text { or } V_{12-4}=450 \mathrm{mV} \\ & \mathrm{~V}_{18-4}=\mathrm{V}_{\mathrm{CC}} / 2 \\ & \mathrm{~V}_{3-4}=2 \mathrm{~V}, \mathrm{~V}_{12-4}=1 \mathrm{~V}, \\ & \mathrm{~V}_{18-4}=\mathrm{V}_{15-4} \end{aligned}$	$\begin{aligned} & -\mathrm{I}_{18} \\ & \mathrm{I}_{18} \end{aligned}$	$\begin{gathered} 25 \\ 2 \end{gathered}$	$\begin{aligned} & 50 \\ & 35 \end{aligned}$	$\begin{array}{r} 100 \\ 5 \end{array}$	$\mu \mathrm{A}$ mA
Narrowband threshold $\begin{aligned} & V_{3-4}=2 \mathrm{~V}, \\ & V_{12-4}=550 \mathrm{~V} \\ & \mathrm{~V}_{18-4}=450 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{18-4} \\ & V_{18-4} \end{aligned}$	$\mathrm{V}_{\mathrm{Cc}}-0.3$	0.036	1	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$
Input impedance	$\begin{aligned} & \mathrm{R}_{3-4} \\ & \mathrm{C}_{3-4} \end{aligned}$		$\begin{aligned} & 4 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Wideband threshold $\begin{aligned} & V_{12-4}=0.7 \mathrm{~V}, \\ & V_{18-4}=V_{C C} / 2, I_{18}=0 \end{aligned}$	$\mathrm{EMF}_{2(\mathrm{rms})}$		20		mV
Electronic standby switch					
Input switching voltage for threshold ON at $V_{18-4} \geq V_{\text {CC }}-3 V$ for threshold OFF at $\mathrm{V}_{18-4} \leq 0.5 \mathrm{~V}$	$\begin{aligned} & V_{11-4} \\ & V_{11-4} \end{aligned}$	3.3		$\begin{aligned} & 2.3 \\ & 20 \end{aligned}$	V v
09/00 TDA1574					

		\min	typ	\max	unit
Switching range	V_{11-4}	2.3	2.8	3.3	V
Input current at ON condition with $\mathrm{V}_{11-4}=0$ at OFF condition with $\mathrm{V}_{11-4}=20 \mathrm{~V}$	$-\mathrm{I}_{11}$		60	150	$\mu \mathrm{~A}$
Input voltage at $\mathrm{I}_{11}=0$	I_{11}		10	20	$\mu \mathrm{~A}$

Dependences

Application Examples

FM - front - end based on TDA1574 and TDA 1596

Application Hints

Plns 11 and 12 should be blocked to ground by in each case 10 nF in order to avoid unwanted signal injection.
The IF gain can be adjusted within the range between 10 dB and 82 dB by means of a dc voltage between 0.6 and 1.6 V at pin 3.

Start of the prestage AGC depends on the RF input voltage at pin 3 and on the dc voltage at pin 12. By appropriate selection of the effective share of the indication voltage at pin 12 the ratio of noise and large signal charasteristic can be optimized.

